New Clinical Evidence Through 6 years: NaturalVue Multifocal for Myopi Douglas P. Benoit, OD; Sally M. Dillehay, OD, EdD

Introduction

Myopia is increasing around the world. Myopia is certainly recognized globally as a major public health issue. The World Health Organization has prioritized it as the second largest cause of blindness and the leading cause of moderate and severe vision impairment.¹ It is estimated that by the year 2050, 5 billion people on the planet will be myopic.² A whopping 1 billion will be highly myopic.² Myopia is caused by increases in axial length, and this axial elongation carries with it risks for ocular diseases such as cataracts, glaucoma, retinal detachment, and myopic maculopathy.³ With traditional correction of myopia, the foveal image is in focus, but the peripheral light rays may fall behind the retina, creating peripheral hyperopic defocus, which is thought to stimulate a growth signal and lead to the lengthening of the eye.⁴

To evaluate the rate of progression of myopic refractive error and axial length in children fit with a commercially available, center-distance, aspheric, extended depth of focus, multifocal soft contact lens with attributes theoretically expected to slow the progression of myopia.

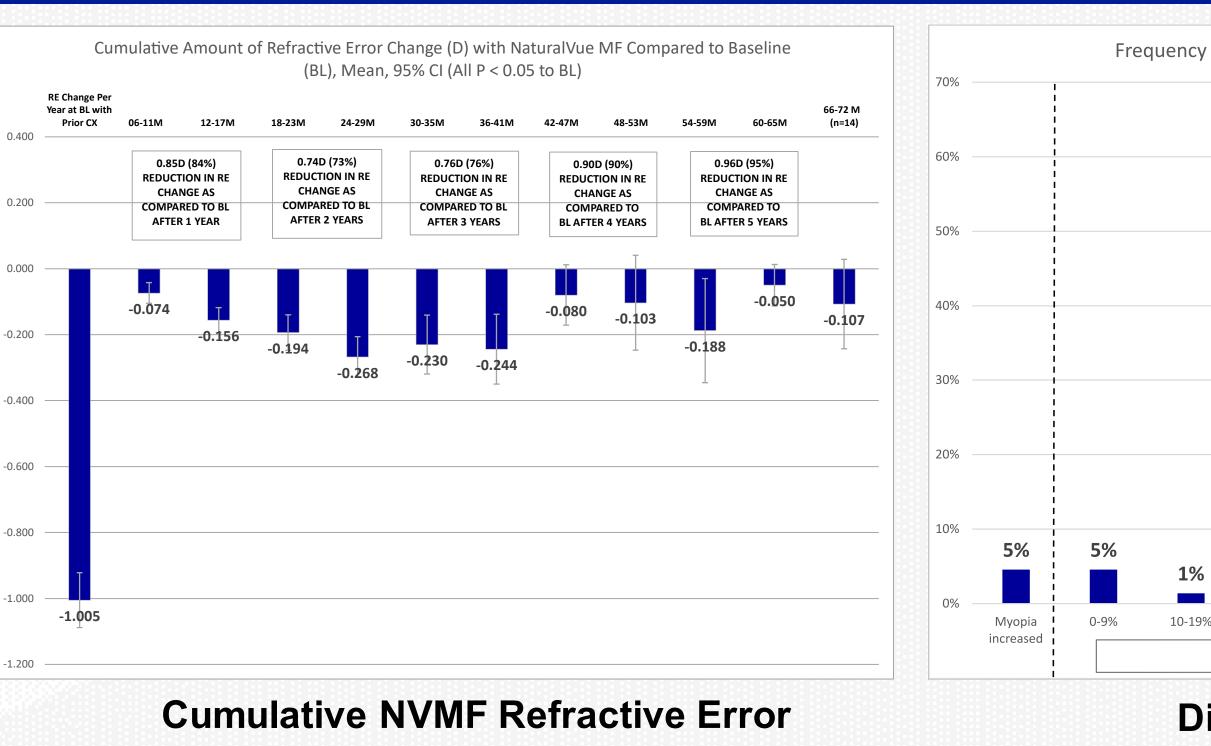
Methods

The study reviewed clinical data from 309 children in 15 practices for all patients fit with NaturalVue Multifocal (NVMF) from Dec 2014 - Dec 2020, with at least 6 months (M) of follow-up data. Participants were not included if they were currently using a myopic progression control treatment, leaving 196 children (392 eyes). Average age at baseline was 12.3 + 2.8 years (range 5-20 years) Initial spherical equivalent refraction (SER) was (Mean + SD) -3.60 + 2.00D, and Axial Length (AL) 25.05 + 1.50mm. Baseline SER progression reported averaged -1.01D/yr. SER was captured at baseline and annual visits. AL was captured at baseline and annual visits for a sub-set of practices. Participants were followed from initial fit through 72 M.

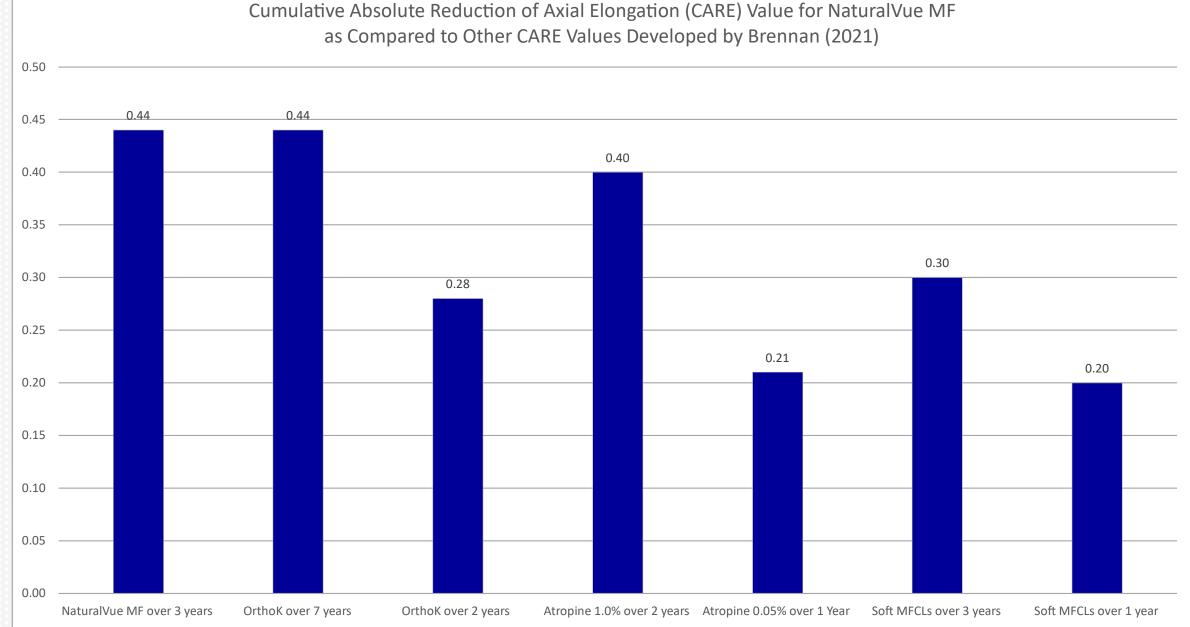
The study encompassed a review of 1260 patient visits. The cohort was 62% female; reported ethnicities were 50% Caucasian, 30% Asian, 10% Other. The average age at first fitting was 12.6 + 3.0 years. The mean SER total cumulative change from baseline was approximately 0.25D or less at all annual visits: Y1: -0.16, Y2: -0.27, Y3: -0.24, Y4: -0.10, Y5: -0.05, Y6: -0.11. NVMF SER change data were significantly different from baseline at all points in time (p < 0.05). The mean AL total cumulative change from baseline was: Y1: 0.07, Y2: 0.15, Y3: 0.18, Y4: 0.40, or approximately \leq 0.10 mm/year through 48 M. NVMF AL change data were significantly different from baseline at all points in time (p < 0.05).

A subset of the data (N=188 RE) was age and ethnicity matched to published control group data for children ages 8 to < 13^{5-9} with an average age of 10.5 <u>+</u> 1.3; 47% were Caucasian, 30% Asian, 23% Other. At baseline, SER averaged -3.60 + 2.00D, AL 24.97 + 0.58mm, with average baseline progression of -0.57D per year and -1.09D over 3 years. Both SER and AL change for NVMF were significantly less (p < 0.05) as compared to published age and ethnicity matched virtual control group data.⁵⁻⁹ Using the age and ethnicity matched virtual control group data, a Cumulative Absolute Reduction in axial Elongation (CARE) value of 0.44mm less axial elongation over 3 years as compared to the age and ethnicity matched virtual control group was determined for NVMF.⁵⁻¹⁰

Age and Ethnicity Matched Virtual Cont Baseline **Y1** -0.57 -0.46 Actual Observed Refractive Error Baseline **Y1** -0.98 -0.012 Age and Ethnicity Matched Virtual C Baseline Y1 0.20 0.25 **Actual Observed Axial Elongatio** Baseline **Y1** 0.33 0.08


Objective

Results


trol Group	Refractive	Error Change	(D) ⁵⁻⁹

	Y2	Y3	3 Yr Cumulative
	-0.36	-0.27	-1.09
Cha	nge with Natu	IralVue Multif	ocal (D)
	Y2	Y3	3 Yr Cumulative
	-0.071	+0.021	-0.062 -1.03D Diff to Control
Con	trol Group Ax	ial Elongatior	ר (mm) ⁵⁻⁹
	Y2	Y3	3 Yr Cumulative
	0.22	0.20	0.67
on v	vith NaturalVu	ue Multifocal	(mm)
	Y2	Y3	3 Yr Cumulative
	0.07	0.08	0.23 0.44 mm Diff to Control (CARE value)

Results (Continued)

Change from Baseline through 72M

NVMF CARE value determined from age and ethnicity matched virtual control group data⁵⁻⁹ compared to CARE values determined by Brennan¹⁰

An analysis using age and ethnicity matched Virtual Control Group data from a meta-analysis by Brennan et al,⁵⁻¹⁰ predicts a CARE value (cumulative difference in axial elongation to the control group) for NaturalVue MF of 0.44 over 3 years. An estimate of the predicted dioptric effect can be made by multiplying CARE by 2.1;¹⁰ therefore, a RE difference for NVMF to the age and ethnicity matched virtual control group of 0.92D over 3 years is predicted by these data, even greater than that observed in the retrospective analysis after 3 years.

Conclusions

NVMF demonstrated a 0.85 D reduction in refractive error change, or 85% (calculated average OU) from baseline (p < 0.05)

95% of the children showed a reduction in myopic progression; 78% showed a decrease of 70% or greater 67% of children had no increase in myopic progression through the entire NVMF wearing period of up to 72M Through a 4-year time frame, the average AL change with NVMF was approximately 0.10mm/year, similar to emmetropic children

A CARE value of 0.44 over 3 years (or approximately 0.92D) for NVMF is predicted based on age and ethnicity matched virtual control group data.⁵⁻¹⁰

The unique, center-distance, aspheric, extended depth of focus design of NaturalVue Multifocal 1 Day contact lenses continues to be proven effective in reducing myopic progression, even through 6 years for the vast majority of children. These findings add to the growing evidence that the NVMF center-distance, multifocal soft contact lenses may slow the progression of myopia.

Author Affiliations

- DPB: Visioneering Technologies, Inc, Alpharetta, GA, USA; SMD: ClinTrialSolutions. Roswell. GA. USA References
- 1. Huang J, et al. (2016) Efficacy Comparison of 16 Interventions for Myopia Control in Children. Ophthalmology. 123(4): 697-708 2. Holden, B. A., et al. (2016). Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology. 123(5): 1036-1042.

stribution of Eyes Showing a Decrease in Myopic Progression Over Time	67% 67% % 2% 2% 1% 2% 5% 1%		/la	na	lg	en	ne	nt		
stribution of Eyes Showing a Decrease in Myopic Progression Over Time 67%	67% 2% 2% 1% 2% 5% 5% 1% 2% 2% 1% 2% 5% 5% 1% Precentage Myopic Progression Decreased Relative to Baseline bution Graph – Cumulative NVMF active Error Change through 72M									
	2% 2% 1% 2% 1% 2% 30-39% 40-49% 50-59% 60-69% 70-79% 80-89% 90-99% 100% or Greater Percentage Myopic Progression Decreased Relative to Baseline bution Graph – Cumulative NVMF Cumulative NVMF active Error Change through 72M	tribution	of Eyes Sh	owing a D	ecrease ir	n Myopic P	rogressior	n Over Tim	Ie	67%
	2% 2% 1% 2% 1% 2% 30-39% 40-49% 50-59% 60-69% 70-79% 80-89% 90-99% 100% or Greater Percentage Myopic Progression Decreased Relative to Baseline bution Graph – Cumulative NVMF Cumulative NVMF active Error Change through 72M									
	2% 2% 1% 2% 1% 29% 30-39% 40-49% 50-59% 60-69% 70-79% 80-89% 90-99% 100% or Greater Percentage Myopic Progression Decreased Relative to Baseline bution Graph – Cumulative NVMF Cumulative NVMF active Error Change through 72M									
	2% 2% 1% 2% 1% 29% 30-39% 40-49% 50-59% 60-69% 70-79% 80-89% 90-99% 100% or Greater Percentage Myopic Progression Decreased Relative to Baseline bution Graph – Cumulative NVMF Cumulative NVMF active Error Change through 72M									
	Percentage Myopic Progression Decreased Relative to Baseline Greater bution Graph – Cumulative NVMF active Error Change through 72M	3%	2%	2%	1%	2%	5%	5%	1%	
Greater	bution Graph – Cumulative NVMF active Error Change through 72M							80-89%	90-99%	
UZ1)										
			0.30			a second				
	0.30			0.2	0					

^{3.} Flitcroft, D. (2012). The complex interactions of retinal, optical and environmental factors in myopia aetiology. Progress in Retinal and Eye Research. 31(6): 622-660 4. Peripheral Hyperopia explanation summarized from: Gifford P, & Gifford KI. (2016). The Future of Myopia Control Contact Lenses. Optometry and Vision Science. 93(4): 336-343. Smith EL, Kee C, Ramamirtham R, Qiao-Grider Y, & Hung L. (2005). Peripheral Vision Can Influence Eye Growth and Refractive Development in Infant Monkeys. Investigative Ophthalmology & Visual Science. 46(11): 3965. Cooper J, Schulman E, Jamal N. (2012). Current Status on the Development and Treatment of Myopia. *Optometry*. 83(5):179-199 5. Myopia Profile. How Can We Set Myopia Control Expectations? https://www.myopiaprofile.com/how-can-we-set-myopia-control-expectations/. Accessed July 16, 2021.

^{6.} Brennan N, Cheng X, Toubouti Y, Bullimore M. Influence of Age and Race on Axial Elongation in Myopic Children. American Academy of Optometry 2018: E-Abstract 180072. https://www.aaopt.org/detail/knowledge-base-article/influence-of-age-andrace-on-axial-elongation-in-myopic-children. Accessed July 16, 2021.

^{7.} Meng W, Butterworth J, Malecaze F et al. Axial length of myopia: a review of current research. Ophthalmologica 2011;225(3):127-134. 8. Parssinen O, Kauppinen M, Viljanen A. The progression of myopia from its onset at age 8-12 to adulthood and the influence of heredity and external factors on myopic progression. A 23-year follow-up study. Acta Ophthalmol 2014;92(8):730-739. 9. Johnson & Johnson Vision. Managing Myopia A Clinical Response to the Growing Epidemic. https://s3-us-west-2.amazonaws.com/covalentcreative/jjv/media/documents/Managing_Myopia_Clinical_Guide_Dec_2020.pdf. Accessed July 17, 2021. 10. Brennan N. Why 'CARE' for Myopia. http://reviewofmm.com/why-care-for-myopia/. Accessed October 1, 2021 Commercial Relationship Disclosures: DPB: Executive Director of Professional Services, VTI; SMD: Consultant to , and former CMO for VT